Microbe-metal interactions in marine hydrothermal environments.
نویسندگان
چکیده
Marine hydrothermal microorganisms respond rapidly to changes in the concentrations and availability of metals within their environment. Hyperthermophilic archaea appear to possess novel mechanisms for metal detoxification, dissimilatory metal reduction and metal assimilation that may be absent in their mesophilic and bacterial counterparts. For example, tungsten was found in high concentrations in a hydrothermal sulfide deposit where hyperthermophiles were also most abundant, consistent with the unique requirement of these organisms for this element. Furthermore, newly isolated genera of iron-reducing hyperthermophiles expand the scope of carbon cycling in hydrothermal environments. The advent of genome sequences and new molecular techniques will facilitate our further understanding of microbe-mineral interactions in these environments.
منابع مشابه
Antioxidant biochemical responses to long-term copper exposure in Bathymodiolus azoricus from Menez-Gwen hydrothermal vent.
Copper (Cu) is essential to various physiological processes in marine organisms. However, at high concentrations this redox-active transition metal may enhance the formation of reactive oxygen species (ROS) and subsequently initiate oxidative damage. High concentrations of Cu may increase oxidative damage to lipids, proteins and DNA. Bathymodiolus azoricus is a Mytilid bivalve very common in hy...
متن کاملArchaeal phylotypes in a metal-rich and low-activity deep subsurface sediment of the Peru Basin, ODP Leg
Site 1231 of the Ocean Drilling Project (ODP) was characterized by low concentrations of organic carbon, as well as low cell numbers and biological activity rates. A 16S rRNA survey was performed in order to analyse the microbial community composition of these central oceanic sediments. Archaeal 16S rRNA genes from subsurface sediments at Site 1231 (1.8, 9.0, and 43 mbsf) were affiliated with u...
متن کاملIndigenous ectosymbiotic bacteria associated with diverse hydrothermal vent invertebrates.
Symbioses involving bacteria and invertebrates contribute to the biological diversity and high productivity of both aquatic and terrestrial environments. Well-known examples from chemosynthetic deep-sea hydrothermal vent environments involve ectosymbiotic microbes associated with the external surfaces of marine invertebrates. Some of these ectosymbioses confer protection or defence from predato...
متن کاملProteomic responses to metal-induced oxidative stress in hydrothermal vent-living mussels, Bathymodiolus sp., on the Southwest Indian Ridge.
Bathymodiolin mussels are amongst the dominant fauna occupying hydrothermal vent ecosystems throughout the World's oceans. This subfamily inhabits a highly ephemeral and variable environment, where exceptionally high concentrations of reduced sulphur species and heavy metals necessitate adaptation of specialised detoxification mechanisms. Whilst cellular responses to common anthropogenic pollut...
متن کاملBiochemical and Molecular Mechanisms of Plant-Microbe-Metal Interactions: Relevance for Phytoremediation
Plants and microbes coexist or compete for survival and their cohesive interactions play a vital role in adapting to metalliferous environments, and can thus be explored to improve microbe-assisted phytoremediation. Plant root exudates are useful nutrient and energy sources for soil microorganisms, with whom they establish intricate communication systems. Some beneficial bacteria and fungi, act...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current opinion in chemical biology
دوره 7 2 شماره
صفحات -
تاریخ انتشار 2003